
DWмс-16
Thе іNѕtRUction ѕеt

VеRѕion 0.8

DIWhy 16 bit MiniComputer Project

November 22, 2023
Document Version v0.3



2 DWмс-16: The Instruction Set

The DWмс-16 16 bit DIWhy Minicomputer is an Open Source Hardware and Software
Project by Tobias Funke. It is licensed under the following Licenses:
CERN Open Hardware Licence Version 2 – Permissive CERN-OHL-P-2.0+
for Hardware
European Union Public License, version 1.2 EUPL-1.2+ for the software.

This document was set in LATEX with the following typefaces:

Sans Serif: Noto Sans
Serif: Modern

Typewriter: IBM Plex Mono
Additional typefaces: Pricedown



DWмс-16: The Instruction Set 3

Introduction

This document was written to have an extensive write down of the design for
the instruction set of the DWмс-16 16 bit DIWhy minicomputer.

This is revision v0.8 of the Instruction Set.



4 DWмс-16: The Instruction Set



DWмс-16: The Instruction Set 5

Memory and Register Layout

This section contains a short overwiew of the DWмс-16 Memory and Register
Layout.

Memory Layout

The DWмс-16has a 16 bit wide data bus with a 24 bit address bus, the system can
access up to 16MiWords (32MiByte) is Random Access Memory. It is organised
into 256 segments of 64 kiWords (128 kiByte) for ease of addressing, as well as
keeping code slightly shorter.

The first segment from 0x000000 to 0x00FFFF is reserved as ’fast’ system
and OS memory. Of this the first 16 Words are reserved for the Reset and In-
terrupt Vectors, which can easily be changed by the OS or external Code. The
Stack also resides within this Segment, counting down from 0x00FFFF, with a
maximum size if 16kiWords.

The second segment from 0x010000 to 0x01FFFF contains the address space
memory mapped IO Hardware.

This is followed by six segments from 0x020000 to 0x07FFFF, containing the
systems BIOS and the main OS.

The BIOS is contained within the third Memory Segment from 0x020000 to
0x02FFFF. It is made up of the Boot Loader, a simple Monitor OS and simple
IO subroutines that can be used by the Main OS and every other program.

The rest of the systems memory segments is general use RAM.

0x000000
0x00000F Interrupt Vectors

0x000010

0x00FFFF
System/OS Memory

 RAM

0x010000

0x01FFFF
Memory Mapped IO

0x020000
0x02FFFF BIOS
0x030000

0x07FFFF

Main OS


Flash Memory

0x080000

0xFFFFFF

General Use RAM


RAM

Figure 1: Memory Layout



6 DWмс-16: The Instruction Set

Register Bank

The DWмс-16 has a register bank with 16 registers of which several are meant
to be special use registers.

Any registers within the register bank can be addressed and accessed like
any other register. This allows to push and pop all registers (safe the Stack
Pointer) to/from the stack, though the Stack Pointer can be moved if nessecary
for the software run on the DWмс-16 .

Additionally, some of the flags within the Flag Register can only be set by
the hardware and can not be overwritten by overwriting the Flag Register.

R00 R01 R02/WH R03 R04 R05 R06 R07
R08/YL R09/YH R10/ZL R11/ZH R12/SPL R13/F R14/PCL R15/PCH

Table 1: Special Regsiters
The majority of the DWмс-16 registers within the register bank are acting as
special use registers.
R07 is the Flag Register, see below.
However the Y and Z Index registers are meant to be used for acting for index
addressing of memory. Additionally, but the Y and Z Index registers can act as
part of counting loops and can be independently tested if they are empty/zero.
The Stack Pointer register is a 16 bit wide register, as it is only used within
the first memory segment, meant to be used to point towards the stack within
memory. It can be automatically be incremented and decremented.
The Program Counter register is a 24 bit wide register that is needed by the
control logic to run the systems program. It can automatically increment itself
by one, two or three, with the latter two needed for branching purposes.

Register Register Label
R13 F Flag Register

R08,R09 Y Y Index Register (32 bit)
R11,R10 Z Z Index Register (32 bit)

R12 SP Stack Pointer Register (24 bit)
R15,R14 PC Program Counter Register (24 bit)

Table 2: Special Use Register Labels



DWмс-16: The Instruction Set 7

Flag Register

The Flag register is a special use register that is used by the Control Logic
to control the program flow and contains all flags of the system. It can be
operated on in normal operation like any other register, e.g. pushed and
poped to/from the Stack, for subroutine operations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z 0 C QC HC TC EQ N OF IE I2 I1 I0

Figure 2: Flag Register Layout

Z Zero Flag N Negative Flag
C Carry Flag OF Overflow Flag
QC Quarter Carry Flag IE Interrupt Enable Flag
HC Half Carry Flag I2 Interupt Flag 2
TC Three Quater Carry Flag I1 Interrupt Flag 1
EQ Equal Flag I0 Interrupt Flag 0

Table 3: Flags

Of these flags, the IO, IE and I0-I2 Flag may be of special interest.
Internally to the DWмс-16 CPU the IO is unimportant and is only of use to
access external IO devices, such as serial communication ports or mass storage
devices.
The IE flag is important for the CPUs handling of interrupts. If the IE flag
is enabled, the DWмс-16 can react to Interrupts, but during interrupt handling
routines, the IE flag has to be disabled.
Finally the I0-I2 flags, cannot be set internally by the DWмс-16 CPU or any
code itself. Instead, these flags are connected to a four layer FIFO memory,
allowing the DWмс-16 to react to interrupts coming over a short time frame
in consecutive order. It also allows for Interrupt handling should a interrupt
occur when another Interrupt is being handled.



8 DWмс-16: The Instruction Set

OpCodes and Addressing Modes

The DWмс-16 Instruction Set uses a 16 bit words to represent its operations. Of
these 16 bit, the upper eight bit are used to identify the operation, while the
lower eight bit vary in use. Some operations extend the size of the opcode by
one to four byte.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Opcode OS Control Code
Branch
Opcode BR

T
OS Control Code

Figure 3: General Opcode Layout

OS Opcode Switch Bit
BRT Branch Target Mode Bit

The upper eight bit are made up of the 7 bit of the actual OpCode for the ma-
jority of operations, encoding the actual operation, and an OpCode Switch Bit,
which has several uses in the Opcode. In case of Operations that make use of
multiple Address Modes, it is used to distinguish between using two Registers
and using a single Register and a memory address/constant data. In Other
cases, the Opcode Switch can be used to encode two different uses of the same
operation.
For Branch Operations, the first 6 bit are the actual OpCpde, while the Branch
Target Mode Bit is followed by the OpCode Switch Bit. The remaining lower
eight bit are again used for other Control Code.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0Type 1: No Operands

0 0 0 0 RD/FType 2: One Operand

Flag Rd
Type 3: One Register
and Flags

Address
Mode Rd

Type 4: One Register
and Address Mode

Rs RdType 5: Two Operands

Figure 4: Control Codes

For some operations, The Destination Register Rd is replaced by the Flag/Bit
selection F, we select a flag in the Flag Register or a Bit in the Bit Test register.



DWмс-16: The Instruction Set 9

Addressing Mode Example
Opcode
Switch

Address Mode
Code

Register add R00, R01 0 0b0000
Immediate ld R00, 0x0F0F 1 0b0001
Direct ld R00, (0x0F0F) 1 0b0010
Absolute ld R00, (0x0F0F0F) 1 0b0011
Relative ld R00, #0x0F0F 1 0b0100

Indirect (Y) ld R00, @Y 1 0b0101
Indirect (Z) ld R00, @Z 1 0b1101
Indexed (Y) ld R00, @Y0x0004 1 0b1110
Indexed (Z) ld R00, @Z0x0004 1 0b1110

Table 4: Addressing Modes

Register Addressing Mode The Register Addressing Mode is used, when an
operation is to operate over two different registers, be it arythmetically,
to move the value of one Register to another, or to compare two Register
values.

Immediate Mode With the Immediate Mode, the operations machine code is
extended by a single 16 bit word containing a value that us directly or
immediately used in the operation.

Direct In Direct Mode, the operations machine code is extended by a single
16 bit word containing the local sector address to memory. The upper 8
bit of the memory address will be taken from the Program Counter. The
value at the indicated address is then used in the operation.

Absolute With Absolute Mode, the operations machine code is extended by
two 16 bit words, which contain the full 24 bit address to memory. The
value at the indicated address is then used in the operation.

Relative In Relative Mode, the operations machine code is extended by a sin-
gle 16 bit word. The value of the word is a signed number with a memory
offset to an address. This offset is added to the Program Counter and the
result used to point to the address in memory. The value at the indicated
address is then used in the operation. The Program Counter itself is not
changed.

Indirect In Indirect Mode, the operation uses the Y or Z Index Register to point
at a memory address. The value at the indicated address is then used in
the operation.

Indexed In Indexed Mode, the operations machine code is extended by a sin-
gle 16 bit word. The value of the word is a signed number with a memory
offset to an address. This offset is added to the Y or Z Index Registers and
the result used to point to the address in memory. The value at the indi-
cated address is then used in the operation. The Index Register itself is
not changed.



10 DWмс-16: The Instruction Set

Branch Operations

In the case of four of the Branch Operations, the machine code of the operation
can be extended by a further one or two 16 bit words, as the operation contains
the jump target as either relative of absolute address. With the addition of the
Address Mode to load a value to compare a Register value against, this means
that the operations machine code is two to five words in length.

Branch Target
Mode Bit Branch Jump Mode Example

0 Relative beq Rs, Rs2, #0x0004
1 Absolute bew Rs, Rs2, 0x0F0F0F

Table 5: Control Codes

Relative Jump The Relative Jump modifies the Program Counter by adding a
signed 16 bit value.

Absolute Jump The Absolute Jump directly replaces the Program Counter
with the address contained in the machine code.



DWмс-16: The Instruction Set 11



12 DWмс-16: The Instruction Set

Data Transfer Operations

Load ld
Mnemonic: ld Rd, Addr/C

Operation: Rd ⇐ Memory[Addr/C]

OpCode: 0b0000001
0123456789101112131415

Opcode 1 Address
Mode Rd0x03XX:

Address Modes: Constant, Direct, Absolute, Relative, Indirect, Indexed

Affected Flags: None

The Load operation loads data from a memory address into a register.

Store st
Mnemonic: st Rs, Addr

Operation: Memory[Addr] ⇐ Rs

OpCode: 0b0000010
0123456789101112131415

Opcode 1 Address
Mode Rd0x05XX:

Address Modes: Direct, Absolute, Relative, Indirect, Indexed

Affected Flags: None

The Store operation stores data from a register to a memory address.

Move mov
Mnemonic: mv Rd, Rs

Operation: Rd ⇐ Rs

OpCode: 0b0000011
0123456789101112131415

Opcode 0 Rs Rd0x06XX:

Address Modes: None

Affected Flags: None

The move operation moves data from one register to another.



DWмс-16: The Instruction Set 13



14 DWмс-16: The Instruction Set

Arithmetic Logic Operations

Add add
Mnemonic: add Rd, Rs

Operation: Rd ⇐ Rd + Rs

OpCode: 0b0100000
0123456789101112131415

Opcode 0 Rs Rd0x40XX:

Opcode 1 Address
Mode Rd0x41XX:

Address Modes: All

Affected Flags: C, QC, HC, TC, Z, N, O

The Add Operation adds a value contained within Rs (or the appropriate ad-
dressed memory location, based on the Address Mode) to the value of Rd. Rs
remains unchanged.

Increment inc
Mnemonic: inc Rd

Operation: Rd ⇐ Rd + 1

OpCode: 0b0100010
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x44XX:

Address Modes: None

Affected Flags: C, QC, HC, TC, Z, N, O

The Increment Operations increments the Register Rd by one.



DWмс-16: The Instruction Set 15

Substract sub
Mnemonic: sub Rd, Rs

Operation: Rd ⇐ Rd - Rs

OpCode: 0b0100100
0123456789101112131415

Opcode 0 Rs Rd0x48XX:

Opcode 1 Address
Mode Rd0x49XX:

Address Modes: All

Affected Flags: C, QC, HC, TC, Z, N, O

The Substract Operation substracts a value contained within Rs (or the appro-
priate addressed memory location, based on the Address Mode) a from the
value of Rd. Rs remains unchanged.

Decrement dec
Mnemonic: inc Rd

Operation: Rd ⇐ Rd - 1

OpCode: 0b0100110
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x4CXX:

Address Modes: None

Affected Flags: C, QC, HC, TC, Z, N, O

The Increment Operations decrements the Register Rd by one.



16 DWмс-16: The Instruction Set

Bitwise AND and
Mnemonic: and Rd, Rs

Operation: Rd ⇐ Rd and Rs

OpCode: 0b0101000
0123456789101112131415

Opcode 0 Rs Rd0x50XX:

Opcode 1 Address
Mode Rd0x51XX:

Address Modes: All

Affected Flags: Z

The Bitwise AND Operation combined a value contained within Rs (or the
appropriate addressed memory location, based on the Address Mode) and the
value of Rd bitwise with a logical AND and saves the result to Rd. Rs remains
unchanged.

Bitwise OR or
Mnemonic: or Rd, Rs

Operation: Rd ⇐ Rd or Rs

OpCode: 0b0101001
0123456789101112131415

Opcode 0 Rs Rd0x52XX:

Opcode 1 Address
Mode Rd0x53XX:

Address Modes: All

Affected Flags: Z

The Bitwise OR Operation combined a value contained within Rs (or the ap-
propriate addressed memory location, based on the Address Mode) and the
value of Rd bitwise with a logical OR and saves the result to Rd. Rs remains
unchanged.



DWмс-16: The Instruction Set 17

Bitwise XOR xor
Mnemonic: xor Rd, Rs

Operation: Rd ⇐ Rd xor Rs

OpCode: 0b0101010
0123456789101112131415

Opcode 0 Rs Rd0x54XX:

Opcode 1 Address
Mode Rd0x55XX:

Address Modes: All

Affected Flags: Z

The Bitwise XOR Operation combined a value contained within Rs (or the ap-
propriate addressed memory location, based on the Address Mode) and the
value of Rd bitwise with a logical XOR and saves the result to Rd. Rs remains
unchanged.

Bitwise NOT not
Mnemonic: inc Rd

Operation: Rd ⇐ not Rd

OpCode: 0b0101011
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x56XX:

Address Modes: None

Affected Flags: Z

The Bitwise NOT Operations logcially inverts the bits of Register Rd and writes
the result back to Register Rd.



18 DWмс-16: The Instruction Set

Logic Shift Left lsl
Mnemonic: lsl Rd

Operation: Rd ⇐ Rd << 1; LSB ⇐ Carry; Carry ⇐ MSB

OpCode: 0b0101100
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x58XX:

Address Modes: None

Affected Flags: Z, C

The Logical Shift Left Operation logically shifts the value of register Rd one bit
to the left. The Lowest Significent Bit of Rd is set to the Carry Flag, while the
Carry Flag is set to the Most Siginficent Bit of the Register Rd.

Logic Shift Right lsr
Mnemonic: lsr Rd

Operation: Rd ⇐ Rd >> 1; MSB ⇐ Carry; Carry ⇐ LSB

OpCode: 0b0101101
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x5AXX:

Address Modes: None

Affected Flags: Z, C

The Logical Shift Left Operation logically shifts the value of register Rd one bit
to the left. The Most Significent Bit of Rd is set to the Carry Flag, while the
Carry Flag is set to the Lowest Siginficent Bit of the Register Rd.



DWмс-16: The Instruction Set 19

Logic Rotate Left lrl
Mnemonic: lrl Rd

Operation: Rd ⇐ Rd << 1; LSB ⇐ MSB

OpCode: 0b0101110
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x5CXX:

Address Modes: None

Affected Flags: None

The Logical Shift Left Operation logically shifts the value of register Rd one bit
to the left. The Lowest Significent Bit of Rd is set to the Most Siginficent Bit of
the Register Rd.

Logic Rotate Right lrr
Mnemonic: lrr Rd

Operation: Rd ⇐ Rd >> 1; MSB ⇐ LSB

OpCode: 0b0101111
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x5EXX:

Address Modes: None

Affected Flags: None

The Logical Shift Left Operation logically shifts the value of register Rd one bit
to the left. The Lowest Significent Bit of Rd is set to the Most Siginficent Bit of
the Register Rd.



20 DWмс-16: The Instruction Set

Logic Switch Bytes lsb
Mnemonic: lsb Rd

Operation: Rd[7:0] ⇐ Rd[15:8]; Rd[15:8] ⇐ Rd[7:0]

OpCode: 0b0110000
0123456789101112131415

Opcode 0 0 0 0 0 Rd0x60XX:

Address Modes: None

Affected Flags: None

The Logical Switch Bytes Operation logically switches the lowest eight bit and
the highest eight bit of regsiter Rd around. This operation is useful for operat-
ing on external devices with an 8 bit data bus.



DWмс-16: The Instruction Set 21



22 DWмс-16: The Instruction Set

Control Flow Operations

Compared to the other operations, Branch operations make use of 6 bit op-
codes, as they are capable of using two different jump target modes, Relative
and Absolute.

Branch if Bit Set bb
Mnemonic: bb Rs, F, Addr

Operation: Relative Jump:
if Rs[F] == 1: PC ⇐ PC + Addr
else: PC ⇐ PC + 2
Absolute Jump:
if Rf[F] == 1: PC ⇐ Addr
else: PC ⇐ PC + 3

OpCode: 0b100010
0123456789101112131415

Opcode 0 0 Flag
Bit Rd

Relative Jump
0x88XX:

Opcode 1 0 Flag
Bit Rd

Absolute Jump
0x8AXX:

Address Modes: None

Affected Flags: Z

This operations test whether a bit or flag are set in the Source Register Rs, which
can be any register in the Register Bank. Usually this ise used to test the Flag
Register F.
The operation is handled within the ALU, by use of a bit generator and an
AND operation, masking the selected bit, which modifies the Z flag.



DWмс-16: The Instruction Set 23

Branch if Bit Not Set bnb
Mnemonic: bnb Rs, F, Addr

Operation: Relative Jump:
if RsF] == 0: PC ⇐ PC + Addr
else: PC ⇐ PC + 2
Absolute Jump:
if Rs[F] == 0: PC ⇐ Addr
else: PC ⇐ PC + 3

OpCode: 0b100011
0123456789101112131415

Opcode 0 0 Flag
Bit Rd

Relative Jump
0x8CXX:

Opcode 1 0 Flag
Bit Rd

Absolute Jump
0x8EXX:

Address Modes: None

Affected Flags: Z

This operations test whether a bit or flag are not set in the Source Register Rs,
which can be any register in the Register Bank. Usually this ise used to test the
Flag Register F.
The operation is handled within the ALU, by use of a bit generator and an
AND operation, masking the selected bit, which modifies the Z flag.



24 DWмс-16: The Instruction Set

Branch if Zero, Decrement bz
Mnemonic: bz Rd, Addr

Operation: Relative Jump:
if Rd == 0: PC ⇐ PC + Addr
else: Rd ⇐ Rd - 1;
PC ⇐ PC + 2
Absolute Jump:
if Rd == 0: PC ⇐ Addr
else: Rd ⇐ Rd - 1;
PC ⇐ PC + 3

OpCode: 0b100100
0123456789101112131415

Opcode 0 0 0 0 0 0 Rd
Relative Jump
0x900X:

Opcode 1 0 0 0 0 0 Rd
Absolute Jump
0x920X:

Address Modes: None

Affected Flags: C, Z, N

This operations is meant to make counting loops simpler to implement.
If the given Register is Zero, the operation jumps to the given relative or abso-
lute address.
If the given Register is not Zero, the operation decrements the Register and
goes to the next operation.



DWмс-16: The Instruction Set 25

Branch if Not Zero, Decrement bnz
Mnemonic: bnz Rd, Adr

Operation: Relative Jump:
if Rd != 0: PC ⇐ PC + Adr;
Rd ⇐ Rd - 1
else: PC ⇐ PC + 2
Absolute Jump:
if Rd != 0: PC ⇐ Adr;
Rd ⇐ Rd - 1
else: PC ⇐ PC + 3

OpCode: 0b100101
0123456789101112131415

Opcode 0 0 0 0 0 0 Rd
Relative Jump
0x940X:

Opcode 1 0 0 0 0 0 Rd
Absolute Jump
0x960X:

Address Modes: None

Affected Flags: C, Z, N

This operations is meant to make counting loops simpler to implement.
If the given Register is Not Zero, the operation jumps to the given relative or
absolute address and decrements the Register.
If the given Register is Zero, the operation goes to the next operation.



26 DWмс-16: The Instruction Set

Branch if equal beq
Mnemonic: beq Rs, Rs2, Adr

Operation: Relative Jump:
if Rs == Rs2: PC ⇐ PC + Adr;
else: PC ⇐ PC + 2
Absolute Jump:
if Rs == Rs2: PC ⇐ Adr;
else: PC ⇐ PC + 3

OpCode: 0b100110
0123456789101112131415

Opcode 0 0 Rs2 Rs
Register Mode
0x98XX:

Opcode 0 1 Address
Mode Rd

Address Mode
0x99XX:

 Relative
Jump

Opcode 1 0 Flag
Bit Rd

Register Mode
0x9AXX:

Opcode 1 1 Flag
Bit Rd

Address Mode
0x9BXX:

 Absolute
Jump

Address Modes: All

Affected Flags: None

This operation test whether two values are equal. This may either be between
two registers (Register Mode) or between a Register and a place in memory
(Addressing Mode).
If the two values are equal, the operations jumps to the given relative or abso-
lute address.
If the two values are not equal, the operations goes to the next operation.



DWмс-16: The Instruction Set 27

Branch if not equal bneq
Mnemonic: bneq Rs, Rs2, Adr

Operation: Relative Jump:
if Rs != Rs2: PC ⇐ PC + Adr;
else: PC ⇐ PC + 2
Absolute Jump:
if Rs != Rs2: PC ⇐ Adr;
else: PC ⇐ PC + 3

OpCode: 0b100111
0123456789101112131415

Opcode 0 0 Rs2 Rs
Register Mode
0x9CXX:

Opcode 0 1 Address
Mode Rd

Address Mode
0x9DXX:

 Relative
Jump

Opcode 1 0 Flag
Bit Rd

Register Mode
0x9EXX:

Opcode 1 1 Flag
Bit Rd

Address Mode
0x9FXX:

 Absolute
Jump

Address Modes: All

Affected Flags: None

This operation test whether two values are equal. This may either be between
two registers (Register Mode) or between a Register and a place in memory
(Addressing Mode).
If the two values are not equal, the operations jumps to the given relative or
absolute address.
If the two values are equal, the operations goes to the next operation.



28 DWмс-16: The Instruction Set

Branch if greater then bgt
Mnemonic: bgt Rs, Rs2, Adr

Operation: Relative Jump:
if Rs > Rs2: PC ⇐ PC + Adr;
else: PC ⇐ PC + 2
Absolute Jump:
if Rs > Rs2: PC ⇐ Adr;
else: PC ⇐ PC + 3

OpCode: 0b101000
0123456789101112131415

Opcode 0 0 Rs2 Rs
Register Mode
0xA0XX:

Opcode 0 1 Address
Mode Rd

Address Mode
0xA1XX:

 Relative
Jump

Opcode 1 0 Flag
Bit Rd

Register Mode
0xA2XX:

Opcode 1 1 Flag
Bit Rd

Address Mode
0xA3XX:

 Absolute
Jump

Address Modes: All

Affected Flags: None

This operation test whether values Rs is greater then value Rs2. This may either
be between two registers (Register Mode) or between a Register and a place in
memory (Addressing Mode).
If Rs is greater then Rs2, the operations jumps to the given relative or absolute
address.
If Rs is not greater then Rs2, the operations goes to the next operation.



DWмс-16: The Instruction Set 29

Branch if greater then or equal bge
Mnemonic: bge Rs, Rs2, Adr

Operation: Relative Jump:
if Rs >= Rs2: PC ⇐ PC + Adr;
else: PC ⇐ PC + 2
Absolute Jump:
if Rs >= Rs2: PC ⇐ Adr;
else: PC ⇐ PC + 3

OpCode: 0b101001
0123456789101112131415

Opcode 0 0 Rs2 Rs
Register Mode
0xA4XX:

Opcode 0 1 Address
Mode Rd

Address Mode
0xA5XX:

 Relative
Jump

Opcode 1 0 Flag
Bit Rd

Register Mode
0xA6XX:

Opcode 1 1 Flag
Bit Rd

Address Mode
0xA7XX:

 Absolute
Jump

Address Modes: All

Affected Flags: None

This operation test whether values Rs is greater then or equal to value Rs2.
This may either be between two registers (Register Mode) or between a Regis-
ter and a place in memory (Addressing Mode).
If Rs is greater then or equal to Rs2, the operations jumps to the given relative
or absolute address.
If Rs is not greater then or equal to Rs2, the operations goes to the next opera-
tion.



30 DWмс-16: The Instruction Set

Jump jmp
Mnemonic: jmp Adr

Operation: Relative Jump:
PC ⇐ PC + Adr
Absolute Jump:
PC ⇐ Adr

OpCode: 0b101010
0123456789101112131415

Opcode 0 0 0 0 0 0 0 0 0 0
Relative Jump
0xA80X:

Opcode 1 0 0 0 0 0 0 0 0 0
Absolute Jump
0xAA0X:

Address Modes: None

Affected Flags: None

This operations is a jump to another part of the program. It either uses relative
or absolute jump addressing.

Jump to Subroutine jms
Mnemonic: jms Adr

Operation: Relative Jump:
ST ⇐ PC + 1
PC ⇐ PC + Adr
Absolute Jump:
ST ⇐ PC + 1
PC ⇐ Adr

OpCode: 0b101011
0123456789101112131415

Opcode 0 0 0 0 0 0 0 0 0 0
Relative Jump
0xAC0X:

Opcode 1 0 0 0 0 0 0 0 0 0
Absolute Jump
0xAEXX:

Address Modes: None

Affected Flags: None

This operations is a jump into a subroutine. Before jumping into the subrou-
tine, the operations increments the program counter by one, before pushing
the program counter onto the Stack, before jumping.



DWмс-16: The Instruction Set 31

Return from Subroutine ret
Mnemonic: ret

Operation: PC ⇐ ST

OpCode: 0b101100
0123456789101112131415

Opcode 0 0 0 0 0 0 0 0 0 00xB000:

Address Modes: None

Affected Flags: None

This operations is a jump returning from a subroutine. It pulls the return jump
address from the Stack. This means that it does not use relative or absolute
jump modes.

Return from Interrupt reti
Mnemonic: reti

Operation: PC ⇐ ST

OpCode: 0b101101
0123456789101112131415

Opcode 0 0 0 0 0 0 0 0 0 00xB400:

Address Modes: None

Affected Flags: None

This operations is a jump returning from an interrupt.
Before returning into the normal program, it looks if another interrupt had
happened during the exercution of the Interrupt handler. If another Interrupt
has happened, it directly jumps into the new Interrupt handling routine.

If no other Interrupt has happened, the return operation pulls the contents of
all registers, safe the Stack Pointer, from the Stack to restore the program state.
It then pulls the return address from the stack and returns to the main program.



32 DWмс-16: The Instruction Set

Other Operations

This section of the Operation Listing contains all operations that do not fall into
the other categories.

Push to Stack push
Mnemonic: push Rs

Operation: ST ⇐ Rs

OpCode: 0b1100000
0123456789101112131415

Opcode 1 0 0 0 0 Rd0xC00X:

Address Modes: None

Affected Flags: None

This operations pushes the content of Register Rs onto the Stack.

Pop to Stack pop
Mnemonic: pop Rs

Operation: Rd ⇐ ST

OpCode: 0b1100001
0123456789101112131415

Opcode 1 0 0 0 0 Rd0xC20X:

Address Modes: None

Affected Flags: None

This operations pops a value from the Stack and saves it to Register Rs.



DWмс-16: The Instruction Set 33

Set Bit sb
Mnemonic: sb Rd, B/F

Operation: Rd[F] ⇐ 1

OpCode: 0b1100010
0123456789101112131415

Opcode 1 Flag
Bit Rd0xC4XX:

Address Modes: None

Affected Flags: Any

This operations sets a bit or flag, in any of the registers in the Register bank.
The operation is handled within the ALU, by use of a bit generator and an OR
operation, setting the selected bit.

Reset Bit rb
Mnemonic: rb Rd, B/F

Operation: Rd[F] ⇐ 0

OpCode: 0b1100011
0123456789101112131415

Opcode 1 Flag
Bit Rd0xC6XX:

Address Modes: None

Affected Flags: Any

This operations resets a bit or flag, in any of the registers in the Register bank.
The operation is handled within the ALU, by use of a bit generator (whith a
negation of the bit mask) and an AND operation, resetting the selected bit.



34 DWмс-16: The Instruction Set

Halt hlt
Mnemonic: hlt

Operation: No Operation

OpCode: 0xFEFF

Address Modes: None

Affected Flags: None

This operation halts the system until a interrupt happens or the system is reset.

No Operation nop
Mnemonic: nop

Operation: No Operation

OpCode: 0xFFFF

Address Modes: None

Affected Flags: None

This operation does nothing. It may be used for timing purposes.



DWмс-16: The Instruction Set 35



36 DWмс-16: The Instruction Set

List of Opcodes
Hex Mnemonic Hex Mnemonic Hex Mnemonic Hex Mnemonic

Data Operations
0x00 --- 0x10 --- 0x20 --- 0x30 ---
0x01 --- 0x11 --- 0x21 --- 0x31 ---
0x02 --- 0x12 --- 0x22 --- 0x32 ---
0x03 ld Rd, Adr/C 0x13 --- 0x23 --- 0x33 ---
0x04 --- 0x14 --- 0x24 --- 0x34 ---
0x05 st Rs, Adr 0x15 --- 0x25 --- 0x35 ---
0x06 mv Rd, Rs 0x16 --- 0x26 --- 0x36 ---
0x07 --- 0x17 --- 0x27 --- 0x37 ---
0x08 --- 0x18 --- 0x28 --- 0x38 ---
0x09 --- 0x19 --- 0x29 --- 0x39 ---
0x0A --- 0x1A --- 0x2A --- 0x3A ---
0x0B --- 0x1B --- 0x2B --- 0x3B ---
0x0C --- 0x1C --- 0x2C --- 0x3C ---
0x0D --- 0x1D --- 0x2D --- 0x3D ---
0x0E --- 0x1E --- 0x2E --- 0x3E ---
0x0F --- 0x1F --- 0x2F --- 0x3F ---

ALU Operations
0x40 add Rd, Rs 0x50 and Rd, Rs 0x60 lsb Rd 0x70 ---
0x41 add Rd, Adr 0x51 and Rd, Adr 0x61 --- 0x71 ---
0x42 --- 0x52 or Rd, Rs 0x62 --- 0x72 ---
0x43 --- 0x53 or Rd, Adr 0x63 --- 0x73 ---
0x44 inc Rd 0x54 xor Rd, Rs 0x64 --- 0x74 ---
0x45 --- 0x55 xor Rd, Adr 0x65 --- 0x75 ---
0x46 --- 0x56 not Rd 0x66 --- 0x76 ---
0x47 --- 0x57 --- 0x67 --- 0x77 ---
0x48 sub Rd, Rs 0x58 lsl Rd 0x68 --- 0x78 ---
0x49 sub Rd, Adr 0x59 --- 0x69 --- 0x79 ---
0x4A -- 0x5A lsr Rd 0x6A --- 0x7A ---
0x4B --- 0x5B --- 0x6B --- 0x7B ---
0x4C dec Rd 0x5C lrl Rd 0x6C --- 0x7C ---
0x4D --- 0x5D --- 0x6D --- 0x7D ---
0x4E --- 0x5E lrl Rd 0x6E --- 0x7E ---
0x4F --- 0x5F --- 0x6F --- 0x7F ---

Branch Operations
0x80 --- 0x90 bz Rd, Off 0xA0 bgt Rs, Rs2, Off 0xB0 ret
0x81 --- 0x91 --- 0xA1 bgt Rs, Adr, Off 0xB1 ---
0x82 --- 0x92 bz Rd, Adr 0xA2 bgt Rs, Rs2, Adr 0xB2 ---
0x83 --- 0x93 --- 0xA3 bgt Rs, Adr, Adr 0xB3 ---
0x84 --- 0x94 bnz Rd, Off 0xA4 bge Rs, Rs2, Off 0xB4 reti
0x85 --- 0x95 --- 0xA5 bge Rs, Adr, Off 0xB5 ---
0x86 --- 0x96 bnz Rd, Adr 0xA6 bgt Rs, Rs2, Adr 0xB6 ---
0x87 --- 0x97 --- 0xA7 bgt Rs, Adr, Adr 0xB7 ---
0x88 bb Rs, F, Off 0x98 beq Rs, Rs2, Off 0xA8 jmp Off 0xB8 ---
0x89 --- 0x99 beq Rs, Adr, Off 0xA9 --- 0xB9 ---
0x8A bb Rd, F, Adr 0x9A beq Rs, Rs2, Adr 0xAA jmp Adr 0xBA ---
0x8B --- 0x9B bew Rs, Adr, Adr 0xAB --- 0xBB ---
0x8C bnb Rs, F, Off 0x9C bneq Rs, Rs2, Off 0xAC jms Off 0xBC ---
0x8D --- 0x9D bneq Rs, Adr, Off 0xAD --- 0xBD ---
0x8E bnb Rs, f, Adr 0x9E bneq Rs, Rs2, Adr 0xAE jmp Adr 0xBE ---
0x8F --- 0x9F bneq Rs, Adr, Adr 0xAF --- 0xBF ---

Other Operations
0xC0 push Rs 0xD0 --- 0xE0 --- 0xF0 ---
0xC1 --- 0xD1 --- 0xE1 --- 0xF1 ---
0xC2 pop Rd 0xD2 --- 0xE2 --- 0xF2 ---
0xC3 --- 0xD3 --- 0xE3 --- 0xF3 ---
0xC4 sb Rd, B/F 0xD4 --- 0xE4 --- 0xF4 ---
0xC5 --- 0xD5 --- 0xE5 --- 0xF5 ---
0xC6 rb Rd, B/F 0xD6 --- 0xE6 --- 0xF6 ---
0xC7 --- 0xD7 --- 0xE7 --- 0xF7 ---
0xC8 --- 0xD8 --- 0xE8 --- 0xF8 ---
0xC9 --- 0xD9 --- 0xE9 --- 0xF9 ---
0xCA --- 0xDA --- 0xEA --- 0xFA ---
0xCB --- 0xDB --- 0xEB --- 0xFB ---
0xCC --- 0xDC --- 0xEC --- 0xFC ---
0xCD --- 0xDD --- 0xED --- 0xFD ---
0xCE --- 0xDE --- 0xEE --- 0xFE hlt
0xCF --- 0xDF --- 0xEF --- 0xFF nop



DWмс-16: The Instruction Set 37



38 DWмс-16: The Instruction Set

Appendix

Rd Destination Register
Rs, Rs2 Source Register

PC Program Counter
C Constant Number
B Branch Jump Mode

Adr Memory Address (16/24 bit)
Off Address Offset (16 bit)
ST Stack Pointer
F Flag Bit

MSB Most Significant Bit
LSB Least Significant Bit

Table 6: Legend of Abbreviations


